Sustained Resonance in very Slowly Varying Oscillatory Hamiltonian Systems
نویسندگان
چکیده
منابع مشابه
Very Slowly Varying Functions
A real-valued function f of a real variable is said to be (p-slowly varying ((p-s .v.) if limn_ . rp (x) [ f (x + a) f (x)] = 0 for each a. It is said to be uniformly 9-slowly varying (u . (P-s .v .) if limn-. . sup, e r rp(x) ; f (x-a) f (x)I =0 for every bounded interval I. It is supposed throughout that rp is positive and increasing . It is proved that if w increases rapidly enough, then eve...
متن کاملVery Slowly Varying Functions Ii
This paper is a sequel to both Ash, Erd1⁄2os and Rubel [AER], on very slowly varying functions, and [BOst1], on foundations of regular variation. We show that generalizations of the Ash-Erd1⁄2os-Rubel approach imposing growth restrictions on the function h, rather than regularity conditions such as measurability or the Baire property lead naturally to the main result of regular variation, th...
متن کاملIdentifiability of Slowly Varying Systems
A system is conceived of as being slowly varying if it changes slowly enough to permit identification to within a specified error. A generic model is developed to study the identifiability and identification of slowly varying systems. The model is suitable for a large variety of nonlinear, time-varying, causal, bounded memory systems; it has finitely many parameters and is linear in its paramet...
متن کاملSustained oscillations in extended genetic oscillatory systems.
Various dynamic cellular behaviors have been successfully modeled in terms of elementary circuitries showing particular characteristics such as negative feedback loops for sustained oscillations. Given, however, the increasing evidences indicating that cellular components do not function in isolation but form a complex interwoven network, it is still unclear to what extent the conclusions drawn...
متن کاملSmoothed Dynamics of Highly Oscillatory Hamiltonian Systems
We consider the numerical treatment of Hamiltonian systems that contain a potential which grows large when the system deviates from the equilibrium value of the potential. Such systems arise, e.g., in molecular dynamics simulations and the spatial discretization of Ha-miltonian partial diierential equations. Since the presence of highly oscillatory terms in the solutions forces any explicit int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Mathematics
سال: 1991
ISSN: 0036-1399,1095-712X
DOI: 10.1137/0151022